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Abstract
The magnetic behaviour of molecular single-chain magnets is investigated in the framework of
a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune
modifications to the original theory are required in order to account for non-collinearity of local
anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame.
The extension of Glauber’s theory to the case of a collinear Ising ferrimagnetic chain is also
discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and
the response of the system to a weak magnetic field, oscillating in time, are studied. Depending
on the experimental geometry, selection rules are found for the occurrence of slow relaxation of
the magnetization at low temperatures, as well as for resonant behaviour of the
a.c. susceptibility as a function of temperature at low frequencies. The present theory applies
successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains,
showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and
ferrimagnetic, but also of canted antiferromagnetic chains.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Slow dynamics of magnetization reversal is a crucial
requirement for potential applications of single-chain magnets
(SCMs) [1–3], and nanowires in general, in magnetic-
memory manufacture. In nanowires with a biaxial anisotropy
this phenomenon is governed by thermal nucleation and
propagation of non-uniform solutions of the corresponding
Euler–Lagrange equation, provided that the sample length is
much larger than the domain-wall width. The associated
characteristic time is expected to follow an Arrhenius
law [4, 5]. For genuine one-dimensional (1D) Ising systems
with single spin-flip stochastic dynamics, a slow relaxation
of the magnetization was first predicted by Glauber [6]
in 1963. Through Glauber’s approach, many physical
systems were investigated, ranging from dielectrics [7–9] to
polymers [7, 10, 11]. More fundamentally, this model has been
employed to justify the use of the Kohlrausch–Williams–Watts
function [10, 12] (stretched exponential) to fit the relaxation of
generalized 1D spin systems. Also the universality issue of the
dynamic critical exponent [13–17] of the Ising model [18], as

well as strongly out-of-equilibrium processes (magnetization
reversal, facilitated dynamics, etc [19]) have been studied
moving from the basic ideas proposed by Glauber.

In this paper, single spin-flip Glauber dynamics is used to
investigate theoretically the slow dynamics of magnetization
reversal in molecular magnetic systems. In particular,
we extend Glauber’s theory [6] both to a collinear Ising
ferrimagnetic chain, and to a chain in which non-collinearity
of local anisotropy axes is encountered. Such extensions are
motivated by the fact that (i) in molecular-based realizations
of SCMs, antiferromagnetic coupling typically has a larger
intensity than the ferromagnetic one; in fact, the overlapping of
magnetic orbitals, which implies antiferromagnetic exchange
interaction between neighbouring spins, can be more
easily obtained than the orthogonality condition, leading to
ferromagnetism [20–22]; and (ii) non-collinearity between
local anisotropy axes and the crystallographic (laboratory)
frame takes place quite often in molecular spin chains. Besides
magnetization reversal, the dynamic response of the system
to a weak magnetic field, oscillating in time at a frequency
ω, is also studied. Depending on the specific experimental
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geometry, selection rules are found for the occurrence of
resonant behaviour of the a.c. susceptibility as a function of
temperature (stochastic resonance) at low frequencies, as well
as for slow relaxation of the magnetization in zero field at low
temperatures.

It is worth noticing that, for zero applied field, the
kinetic Ising model first proposed by Glauber and solved by
him in one dimension [6] can be mapped, in any dimension
D, onto an Ising model with multispin interactions in a
transverse field [23]. For D = 1, the latter quantum
spin Hamiltonian could be diagonalized after a Jordan–
Wigner transformation [24], and the eigenvalues of the
equivalent fermion problem were shown [23] to coincide with
the inverse of the characteristic timescales of the original
stochastic model [6]. Since then, a wealth of papers have
appeared [25, 26], where the techniques of quantum field
theory on a lattice have been used to examine stochastic
processes of particles in a solid (and other non-quantum
mechanical objects, like domain walls in a magnet). In
this way, exact solutions of the master equation could be
obtained, in 1D, in terms of the energy spectrum of the
equivalent quantum Hamiltonian. In the present paper, we
prefer to follow Glauber’s theoretical approach (modified in
order to include the effect of non-collinearity) because our
aim is primarily to explain the selection rules for single-chain-
magnet behaviour, experimentally observed in real molecular
compounds. For such systems, the original solution [6] of the
master equation in terms of classical spins is—in our opinion—
more transparent than a quantum-field-theoretical approach,
and thus it is expected to be more useful to the experimental
community of molecular magnetism.

This paper is organized as follows. In section 2 we
recall some basic results of the original Glauber theory [6]
and introduce our model, which allows computing the a.c.
susceptibility of a chain of coupled non-collinear anisotropic
magnetic centres, possibly with Landé factors that vary
from site to site. In section 3 we calculate, in a linear
approximation, the magnetic response of the system to a
weak, oscillating magnetic field. For a chain of N spins,
the a.c. susceptibility is expressed as the superposition of N
contributions, each characterized by its timescale; through
a few simple examples, we show that, depending on the
geometry of the system (i.e. the relative orientations of
the local easy anisotropy axes and of the applied field),
different timescales can be selected, possibly giving rise,
for low frequencies, to a resonant peak in the temperature
dependence of the complex magnetic susceptibility. In
section 4 we show that the theory provides a satisfactory
account for the SCM behaviour selectively observed in
some magnetic molecular chain compounds, characterized
by dominant antiferromagnetic exchange interactions and
non-collinearity between spins. Finally, in section 5, the
conclusions are drawn and possible forthcoming applications
are also discussed. In the three appendices one can find
details about the calculation of the a.c. susceptibility and the
relaxation rate of the magnetization in zero field.

2. The non-collinear Ising–Glauber model

In a celebrated paper [6], Glauber introduced, in the usual 1D
Ising model [18], a stochastic dependence on the time variable
t : i.e. the state of a spin lying on the kth lattice site was
represented by a two-valued stochastic function σk(t):

HI = −
N∑

k=1

(JIσkσk+1 + gμB H e−iωtσk), σk(t) = ±1.

(2.1)
JI is the exchange coupling constant, that favours nearest-
neighbouring spins to lie parallel (JI > 0, ferromagnetic
exchange) or antiparallel (JI < 0, antiferromagnetic
exchange), g is the Landé factor of each spin and μB is
the Bohr magneton. In the original paper [6], a system of
equivalent magnetic centres, arranged in a 1D lattice in such
a way that the easy axis direction was the same for all of
them (collinear Ising chain), was studied. Moreover, the
response to a time-dependent magnetic field H (t), applied
parallel to the common easy axis direction and oscillating with
frequency ω, as in typical a.c. susceptibility experiments, was
considered [6].

In order to investigate the phenomena of slow relaxation
(for H = 0) and resonant behaviour of the a.c. susceptibility
(for H �= 0) in molecular SCMs, we are going to generalize
the Glauber model (2.1) accounting for the non-collinearity of
local anisotropy axes between themselves and with respect to
the crystallographic (laboratory) frame. To this aim, we adopt
the following model Hamiltonian:

H = −
N∑

k=1

(JIσkσk+1 + GkμB H e−iωtσk), σk(t) = ±1.

(2.2)
JI is an effective Ising exchange coupling that can
approximately be related to the Hamiltonian parameters of a
real SCM [27, 28]: see later on the discussion in section 4.
Like in the usual Ising–Glauber collinear model (2.1), the spins
in (2.2) are described by classical one-component vectors that
are allowed to take two integer values σk(t) = ±1, but now the
magnetic moments may be oriented along different directions,
ẑk , varying from site to site. Within this scheme, the Landé
tensor of a spin on the kth lattice site has just a non-zero
component, g‖

k , along the local easy anisotropy direction ẑk .
Denoting by êH the direction of the oscillating magnetic field,
H(t) = H e−iωt êH , we define the generalized Landé factor Gk

appearing in (2.2) as

Gk = g‖
k ẑk · êH (2.3)

i.e. a scalar quantity that varies from site to site. Following
Glauber [6], we define the single-spin expectation value
sk(t) = 〈σk〉t , where brackets denote a proper ensemble
average and the stochastic magnetization along the direction
of the applied field

〈M〉t = μB

N∑

k=1

Gk〈σk〉t = μB

N∑

k=1

Gksk(t). (2.4)
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The basic equation of motion of the Glauber model [12, 14] is

d

dt
sk(t) = −2〈σkwσk→−σk 〉, (2.5)

in which wσk→−σk represents the probability per unit time to
reverse the kth spin, through the flip +σk → −σk . For a
system of N coupled spins, this probability is affected by the
interaction with the other spins, with the thermal bath and,
possibly, with an external magnetic field. Among all possible
choices for the transition probability wσk→−σk as a function of
the N + 1 variables [11, 19, 29, 30] {σ1, . . . , σk, . . . , σN , t},
we adopt, in zero field and in the presence of an external field,
respectively:

wH=0
σk→−σk

= 1
2α[1 − 1

2γ σk(σk−1 + σk+1)], (2.6)

wH
σk→−σk

= wH=0
σk→−σk

(1 − δkσk). (2.7)

The attempt frequency 1
2α (i.e. the probability per unit

time to reverse an isolated spin) remains an undetermined
parameter of the model; γ accounts for the effect of the
two nearest neighbours of the kth spin; the parameters δk

have the role of stabilizing the configuration in which the kth
spin is parallel to the field and destabilizing the antiparallel
configuration. Thanks to the particular choices (2.6) and (2.7)
for the transition probability, by imposing the detailed balance
conditions [6] it is possible to express γ and δk as functions of
the parameters in the spin Hamiltonian (2.2):

γ = tanh(2β JI), δk = tanh(βGkμB H ), (2.8)

where β = 1
kBT is the inverse temperature in units of

Boltzmann’s constant. For H = 0, combining (2.5) with (2.6)
yields

ds(t)

dt
= −αAs(t), (2.9)

where s(t) denotes the vector of single-spin expectation values
{s1(t), s2(t), . . . , sN (t)} and A is a square N × N symmetric
matrix, whose non-zero elements are Ak,k =1 and Ak,k−1 =
Ak,k+1 = − γ

2 , with A1,N = AN,1 = − γ

2 if periodic boundary
conditions are assumed for the N-spin chain. A closed solution
of the set of first-order differential equations (2.9) can be
obtained expressing the expectation value of each spin, sk(t),
in terms of its spatial Fourier transform (FT) s̃q :

sk(t) =
∑

q

s̃q eiqke−λq t . (2.10)

By substituting (2.10) into (2.9), one readily obtains the
dispersion relation

λq = α(1 − γ cos q), q = 2π

N
n (2.11)

with n = 0, 1, . . . , N − 1 [31]. For ferromagnetic coupling
(JI > 0, hence γ > 0) the smallest eigenvalue λq=0 = α(1−γ )

occurs for n = 0, independently of the number of spins N
in the chain. For antiferromagnetic coupling (JI < 0, hence
γ < 0) and N even, the smallest eigenvalue λq=π = α(1−|γ |)
occurs for n = N

2 ; while in the case of N odd, the smallest

eigenvalue corresponds to α[1 − |γ | cos( π
N )], thus depending

on the number of spins in the antiferromagnetic chain [32]. The
characteristic timescales of the system, τq , are given by

τq = 1

λq
= 1

α(1 − γ cos q)
. (2.12)

At finite temperatures, the characteristic times τq are finite
because |γ | < 1; for T → 0 one has that 1 − |γ | vanishes
irrespective of the sign of JI, because γ → JI

|JI| = ±1. Thus,
for H = 0, there is always one diverging timescale in the
T → 0 limit: τq=0 for ferromagnetic coupling and τq=π for
antiferromagnetic coupling (and even N). In the presence of
a non-zero, oscillating field H (t) = H e−iωt , the equation of
motion (2.5) with the choice (2.7) takes a form (see (3.1) in
section 3 later on) which can still be solved, though in an
approximate way [6], for a sufficiently weak intensity of the
applied magnetic field.

3. Magnetic response to an oscillating magnetic field

In this section we discuss the magnetic response of a non-
collinear Ising chain to a weak a.c. field. In spite of
its intrinsic simplicity, our approach naturally justifies the
occurrence of resonant behaviour only for fields applied along
specific directions with respect to the crystallographic axes of
a molecular compound, as observed in experiments [33–37].

In the presence of a magnetic field H , the transition
probability to be put in the equation of motion (2.5) is wH

σk→−σk
,

defined in (2.7). One obtains

dsk(t)

dt
= −α

{
sk(t) − γ

2
[sk+1(t) + sk−1(t)]

+ γ δk

2
[〈σkσk+1〉t + 〈σk−1σk〉t ] − δk

}
(3.1)

i.e. the presence of a non-zero field introduces into the equation
of motion both a non-homogeneous term, δk , and the time-
dependent pair-correlation functions 〈σkσk±1〉t . The latter
ones, assuming that the field is weak enough to induce just
small departures from equilibrium, can be approximated by
their time-independent counterparts [38]:

〈σkσk+1〉t = 〈σk−1σk〉t ≈ tanh(β JI) ≡ η. (3.2)

As is usual in a.c. susceptibility measurements, we also
assume the time-dependent magnetic field H(t) = H e−iωt êH ,
oscillating at a frequency ω, to be weak so that the δk

parameters can be linearized. Within this linear approximation
(see appendix A for details), the susceptibility of a non-
collinear Ising chain is

χ(ω, T ) = Nμ2
Bβ f (β JI)

∑

q

α|G̃q |2
α(1 − γ cos q) − iω

, (3.3)

where f (β JI) = 1 − γ η = 1−η2

1+η2 and G̃q is the FT of Gk . In
principle, the a.c. susceptibility of a chain with N spins admits
N poles, corresponding to the N eigenvalues λq in (2.11).
Each mode is related to a different timescale τq = 1/λq . In
practice, not all the timescales will be involved in the complex
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susceptibility χ(ω, T ), but only the ones selected by G̃q . A
result similar, at first glance, to (3.3) was deduced by Suzuki
and Kubo [31], but in their case the relationship was between
the timescale τq and the wavevector-dependent susceptibility
χ(q, ω). In contrast, in an a.c. susceptibility experiment only
the zero-wavevector susceptibility χ(q = 0, ω) is accessible;
the peculiarity of (3.3) is that other timescales, different
from τq=0, can be selected, due to the dependence of the
gyromagnetic factors Gk and of the local anisotropy axes on
the site position k. This is the main result of our study and
will be clarified hereafter through a few examples of non-
collinear geometries, selected according to the most frequent
realizations in molecular magnetic polymers.

3.1. The a.c. susceptibility of a collinear Ising ferrimagnetic
chain

Let us start considering the case of a one-dimensional Ising
model with two kinds of spins (aligned parallel or antiparallel
to the chain axis) alternating on the odd and even magnetic sites
of the lattice with Landé factors G2r+1 = go and G2r = ge

(integer r ), respectively. Strictly speaking, a collinear Ising
ferrimagnet is characterized by an antiferromagnetic coupling
JI < 0, but also the case JI > 0 can be treated through (3.3).
In fact, since the local axis of anisotropy has the same direction
for all the spins, the FT of the site-dependent Landé factor is

G̃q = 1

N

N/2∑

r=1

[gee
−iq2r + goe−iq(2r−1)]

= (ge + eiq go)
1

N

N/2∑

r=1

e−iq2r . (3.4)

Taking into account that, in the presence of periodic boundary
conditions, one has

N/2∑

r=1

e−iq2r = N

2
(δq,0 + δq,π ), (3.5)

it follows that the only non-zero values of G̃q are for q = 0
and π :

G̃‖
q = 1

2 [(ge + go)δq,0 + (ge − go)δq,π ]. (3.6)

Thus, according to (3.3), the parallel a.c. susceptibility (‖= zz)
of a collinear Ising chain with alternating spins is

χ‖(ω, T ) = Nμ2
Bβ f (β JI)

× 1

4

[
(ge + go)

2

(1 − γ ) − i(ω
α
)

+ (ge − go)
2

(1 + γ ) − i(ω
α
)

]
. (3.7)

It appears that both the relaxation times obtained by Suzuki
and Kubo [31] for the ordinary and the staggered susceptibility
of the usual Ising model, namely τq=0 = [α(1 − γ )]−1

and τq=π = [α(1 + γ )]−1, respectively, do coexist in the
a.c. susceptibility (3.7). Notice that, in the ω → 0 limit, the
static susceptibility of the Ising ferrimagnet in zero field [17]
is recovered from (3.7), since one has f (β JI)

1∓γ
= 1−η2

1+η2
1

1∓γ
=

e±2β JI .

As regards the dynamic response of the system to
an oscillating magnetic field applied along the chain
axis, depending on the sign of the effective exchange
coupling constant JI, either the ferromagnetic (ge + go)
or the antiferromagnetic (ge − go) branch of the parallel
susceptibility (3.7) is characterized by a diverging timescale at
low temperature. In particular, for a collinear Ising ferrimagnet
one has JI < 0, so that τq=π is diverging, while τq=0 is short
(of the order of α−1, the attempt frequency of an isolated spin).
Thus, for JI < 0, a resonant behaviour of the a.c. susceptibility
versus temperature (at low frequencies ω/α 
 1) can only
be observed in the case ge �= go (see figure 1(d)) when
magnetic moments are uncompensated, while a broad peak
is found in the case ge = go when the net magnetization is
zero (see figure 1(b)). Clearly, for JI > 0, a resonant peak is
found in both cases (see figures 1(a) and (c)), because a net
magnetization is always present in the system.

Such a resonant behaviour of the a.c. susceptibility versus
T , in ferromagnetic [39] as well as in ferrimagnetic [17]
Ising chains with single spin-flip Glauber dynamics, is a
manifestation of the stochastic resonance phenomenon [40]:
i.e. the response of a set of coupled bistable systems to a
periodic excitation is enhanced in the presence of a stochastic
noise when a matching occurs between the fluctuation-induced
switching rate of the system and the forcing frequency. In
a magnetic chain, the role of stochastic noise is played by
thermal fluctuations and the resonant peak in the temperature
dependence of the a.c. susceptibility occurs when the statistical
timescale, associated with the slow decay of the magnetization,
matches with the deterministic timescale of the applied
magnetic field:

τq(Tpeak) ≈ 1

ω
. (3.8)

For completeness, the reader can refer to appendix C and
section 4.4 for details about the ferrimagnetic-chain relaxation
in zero field starting from ‘partial’ and full saturation.

3.2. The a.c. susceptibility of a twofold helix

The helical arrangement of local axes of anisotropy, ẑk , which
thus realize reciprocal non-collinearity between them, is often
encountered in real systems [1, 3]. Details for the general case
and for the definition of the crystallographic axes (x, y, z) are
given in appendix B. As a general result, the susceptibility for
fields applied along the unique axis of the helix (i.e. the chain
axis), z, is given by

χ‖(ω, T ) = Nμ2
Bβ f (β JI)

g2 cos2 θ

(1 − γ ) − i(ω
α
)

(3.9)

which differs from Glauber’s result for the collinear Ising
chain [6] only by the geometrical factor cos2 θ . For
ferromagnetic coupling, JI > 0, the relaxation time τ0 =
[α(1 − γ )]−1 diverges as T → 0, and a resonant behaviour
of the a.c. parallel susceptibility versus temperature is found,
at low frequency, when the oscillating field is applied parallel
to the helix axis, z, along which spins are uncompensated: see
figure 2(a), which refers to the case of a twofold helix (n = 2
with the notation of appendix B).

4



J. Phys.: Condens. Matter 21 (2009) 236007 A Vindigni and M G Pini

Figure 1. Temperature dependence of the imaginary part of the complex susceptibility, (3.7), of a collinear one-dimensional Ising model with
alternating spins. Resonant behaviour in response to an oscillating magnetic field is possible, at low frequency, only when magnetic moments
are uncompensated ((a), (c), (d)), while a broad peak is found when the net magnetization is zero (b). (The curves refer to reduced frequency
ω/α = 0.001.)

perpendicular susceptibility

perpendicular susceptibility

parallel susceptibility

parallel susceptibility

Figure 2. (Colour online) Temperature dependence of the imaginary part of the parallel (3.9) and perpendicular (3.11) complex susceptibility
of an Ising chain with twofold helical spin arrangement. The local axes ẑ1 and ẑ2 were assumed to form an angle θ = π

3 with z, the chain axis
(unique axis of the helix). Different curves refer to different values of ω/α: 0.0001 (continuous, red line); 0.0002 (dashed, green line); 0.0005
(dashed single-dotted, blue line) and 0.0010 (dashed double-dotted, violet line). Resonant behaviour in response to an oscillating magnetic
field is possible, at low frequency, only for a field applied in a direction where magnetic moments are uncompensated ((a), (c)), while a broad
peak is found ((b), (d)) when there is no net magnetization along the field direction.

Let us now consider the case of an oscillating magnetic
field H applied perpendicularly to the chain axis. Here we
consider only the case n = 2, but the reader is referred to
appendix B for n > 2.

• n = 2. In this case, it is worth noticing that, for H parallel
to y, one has identically Gr ≡ 0 for any lattice site r .
Thus, G̃ y

q ≡ 0 and the corresponding a.c. susceptibility is
identically zero: χyy(ω, T ) ≡ 0 (not shown). In contrast,

5
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for H parallel to x , one has Gr = −g sin θ on odd sites
and Gr = +g sin θ on even sites. The FT is

G̃x
q = 1

N

N/2∑

r=1

g sin θ(e−iq2r − e−iq(2r−1))

= g sin θ
δq,0 + δq,π

2
(1 − eiq) = g sin θ δq,π (3.10)

where we have taken into account (3.5). Thus, for
ferromagnetic coupling, JI > 0, the relaxation time
τπ = [α(1 + γ )]−1 does not diverge as T → 0 and the
perpendicular a.c. susceptibility

χxx (ω, T ) = Nμ2
Bβ f (β JI)

g2 sin2 θ

(1 + γ ) − i(ω
α
)

(3.11)

does not present a resonant behaviour as a function of
temperature; rather, it presents a broad maximum (see
figure 2(b)). Clearly, in the case of antiferromagnetic
coupling, JI < 0, the behaviour of the susceptibility
components is reversed: a broad maximum is found for
the temperature dependence of the parallel susceptibility
χzz(ω, T ) (see figure 2(d)), while a resonant behaviour is
found for the perpendicular susceptibility χxx (ω, T ) (see
figure 2(c)).

In appendix B, we show that no resonant behaviour is
expected for the perpendicular a.c. susceptibility χ⊥(ω, T ) of
an n-fold helix with n > 2, neither for JI > 0 nor for JI < 0.
Such a remarkable result is consistent with what was observed
in the CoPhOMe molecular spin chain (see section 4.3), and
it may be of interest for further experimental studies on the
dynamics of other molecular magnets.

Summarizing, in the general case of an Ising chain
with an n-fold helical spin arrangement (n � 2), we
have explicitly shown that a resonant behaviour of the a.c.
susceptibility versus temperature, similar to the one displayed
by ferromagnetic [6, 39] and ferrimagnetic [17] Ising chains
with collinear spins, is possible only for a field applied
in a direction where magnetic moments are uncompensated.
In contrast, a broad peak is found when there is no net
magnetization along the field direction in the limit T → 0 and
H → 0+.

4. Application to real single-chain magnets

In this section, we are going to show that the selection
rules for resonant behaviour in the a.c. susceptibility, ex-
perimentally observed in some real molecular chain com-
pounds, are successfully reproduced by our model. The de-
veloped formalism is applied to three systems—we know
this restriction is far from being exhaustive [1, 3]—namely
Mn-, Dy- and Co-based molecular magnetic chains [35, 36, 33].
They were selected, among all representative realizations of
SCMs, because a.c. susceptibility data on single crystals are
available, which is a fundamental requirement for checking
the proposed selection rules. The three systems [35, 36, 33]
are characterized by the alternation of two types of magnetic
centres along the chain axis so that at least two spins per cell
have to be considered; moreover, the magnetic moments are

not collinear, the dominant exchange interactions are antiferro-
magnetic and a strong single-ion anisotropy is present, which
favours magnetization alignment along certain crystallographic
directions ẑk . The static properties of these compounds, like
magnetization and static susceptibility, are generally well de-
scribed using a classical Heisenberg model with an isotropic
exchange coupling J and a single-ion anisotropy D. Thus, in
order to describe the dynamic behaviour in response to a weak,
oscillating magnetic field by means of the previously devel-
oped theory, it is necessary to relate the Hamiltonian param-
eters of such a classical spin model to the exchange constant
JI of the effective Ising model (2.2). In the following we will
show, through a few examples on real systems, that indeed, de-
pending on the geometry, selection rules are obeyed for the oc-
currence of slow relaxation of the magnetization at low temper-
atures (β|JI| � 1), as well as for resonant behaviour of the a.c.
susceptibility as a function of temperature at low frequencies.
As regards the frequencies involved in an a.c. susceptibility
experiment on real SCMs, generally [1, 3] they lie in the range
10−1–104 Hz, while the attempt frequency α is of the order of
109–1013 Hz. Thus, for a typical experiment, a resonant peak
in the a.c. susceptibility can safely be observed, provided that
at least one of the characteristic timescales τq involved in (3.3)
diverges at low T , in order for the condition (3.8) to be satis-
fied.

4.1. The MnIII -based single-chain magnet

In the 1D molecular magnetic compound of formula
[Mn(TPP)O2PPhH]·H2O, obtained by reacting Mn(III) acetate
mesotetraphenylporphyrin with phenylphosphinic acid [35],
hereafter denoted by MnIII-based SCM, the phenylphosphinate
anion transmits a sizeable antiferromagnetic exchange interac-
tion that, combined with the easy axis magnetic anisotropy of
the MnIII sites, gives rise to a canted antiferromagnetic arrange-
ment of the spins. The static single-crystal magnetic properties
were analysed in the framework of a classical spin Hamilto-
nian:

H = −
N/2∑

r=1

{JS2r−1 · S2r + D[(Sz1
2r−1)

2 + (Sz2
2r )

2]

+ e−iωt μB H αgαβ[Sβ

2r−1 + Sβ

2r ]} (4.1)

where J < 0 is the antiferromagnetic nearest-neighbour
exchange interaction between S = 2 spins. D > 0 is
the uniaxial anisotropy favouring two different local axes,
alternating along odd and even sites, respectively; both axes
form an angle θ = 21.01◦ with the crystallographic c axis,
while they form opposite angles of modulus φ = 56.55◦
with the a axis (see figure 3). Thus we can write ẑ2r−1 =
sin θ cos φêx −sin θ sin φêy +cos θ êz and ẑ2r = sin θ cos φêx +
sin θ sin φêy + cos θ êz .

A best fit of the static single-crystal magnetic susceptibil-
ities, calculated via a Monte Carlo simulation [35], provides
J = −1.34 K and D = 4.7 K; the gyromagnetic tensor Gαβ is
diagonal and isotropic with g‖ = 1.97. Equivalent results can
be obtained calculating the static properties of model (4.1) via
a transfer matrix approach [41]. Since the uniaxial anisotropy
D is rather strong with respect to the exchange coupling |J |, as
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a first approximation one can assume the two sublattice mag-
netizations to be directed just along the two easy axes, ẑ2r−1

and ẑ2r , so that the chain system (4.1) can be described by a
non-collinear Ising model formally identical to (2.2), with an
effective3 Ising exchange coupling JI and a generalized Landé
factor Gk defined as, respectively

JI = J S(S + 1) cos(ẑ2r−1 · ẑ2r ),

Gr = g‖
r

√
S(S + 1) (ẑr · êH ).

(4.2)

Depending on the orientation of the oscillating magnetic
field with respect to the crystallographic axes, the FT of the
generalized Landé factor takes the following forms:

G̃q = g‖√S(S + 1)
1

N

N/2∑

r=1

e−iq2r [eiq(ẑ2r−1 · êH ) + (ẑ2r · êH )]

= g‖√S(S + 1)

×

⎧
⎪⎨

⎪⎩

sin θ1 cos φ1δq,0 for H ‖ x

sin θ1 sin φ1δq,π for H ‖ y

cos θ1δq,0 for H ‖ z (chain axis).

(4.3)

The corresponding a.c. susceptibility takes the expression

χ(ω, T ) = Nμ2
Bβ f (β JI)(g‖)2[S(S + 1)]

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin2 θ cos2 φ
1

(1 − γI) − i(ω
α
)

for H ‖ x

sin2 θ sin2 φ
1

(1 + γI) − i(ω
α
)

for H ‖ y

cos2 θ
1

(1 − γI) − i(ω
α
)

for H ‖ z (chain axis).

(4.4)

Taking into account that, for the MnIII SCM under study,
the ‘true’ exchange coupling, J in (4.1), is antiferromagnetic,
and that the angle between the two easy anisotropy axes ẑ1

and ẑ2 is δ = 34.6◦ < 90◦ (see figure 3, right), from (4.2)
it follows that the effective Ising exchange coupling is also
antiferromagnetic, JI < 0. As a consequence, in the low
temperature limit β|JI| → ∞, the relaxation time τq=π

diverges, while τq=0 does not. Thus, for low frequencies
ω/α 
 1, the a.c. susceptibility presents a resonant behaviour
only when the oscillating magnetic field is applied along the
crystallographic y axis, i.e. the direction, perpendicular to
the chain axis, along which the magnetizations of the two
sublattices are uncompensated (see figure 3). In contrast,
when H is applied parallel to z (the chain axis) or to x ,
namely two directions along which the magnetizations of
the two sublattices are exactly compensated, no resonant
behaviour is expected. These theoretical predictions turn
out to be in excellent agreement with experimental a.c.

3 For a collinear Heisenberg ferromagnet with exchange J and anisotropy
D, the energy cost of a domain wall was calculated and compared with the
energies of a sharp wall and of a soliton: the crossover between the ‘sharp
wall’ regime (J 
 D) and the ‘broad wall’ regime (J � D) was found
to occur [28] for J/D = 1.8. In principle, a similar calculation should be
performed also for the non-collinear model (4.1), in order to find the limits of
validity for the approximation made, e.g. in (4.2).

Figure 3. (Colour online) Disposition of local axes (ẑ2r−1 and ẑ2r )
and magnetic moments (red arrows) in the MnIII-based real SCM,
discussed in section 4.1, with antiferromagnetic effective Ising
exchange coupling JI < 0. Right: schematic view of the chain
structure (z is the chain axis) along the crystallographic x axis. Left:
projections of local axes (dashed lines) and of magnetic moments
(red arrows) in the xy plane, perpendicular to the chain axis.

susceptibility data [35] obtained in a single-crystal sample of
[Mn(TPP)O2PPhH]·H2O, thus confirming that such a MnIII-
based canted antiferromagnet is a bona fide SCM.

4.2. The DyIII-based single-chain magnet

The molecular magnetic compound of formula [Dy(hfac)3

(NITPhOPh)], hereafter denoted by DyIII-based SCM, belongs
to a family of quasi-1D magnets in which rare earth ions
(with spin S) and organic radical ions (with spin s = 1/2)
alternate themselves along the chain axis, z, which in this
compound coincides with the crystallographic b axis. Static
measurements in single-crystal samples suggest [36, 37] that
there is an antiferromagnetic exchange interaction between
neighbouring DyIII ions; besides, the easy anisotropy axes of
two neighbouring DyIII are canted with respect to the chain
axis, and one with respect to each other, in such a way that
an uncompensated moment appears along b; the components
in the ac plane are, instead, compensated. Thus, as far as
the dominant exchange interaction J < 0 between DyIII ions
is taken into account, the spin Hamiltonian of the system is
quite similar to (4.1). However, with respect to the MnIII-
based chain, the crystal structure of the DyIII-based SCM is
more complicated, not only owing to the presence of two kinds
of magnetic centres (the DyIII ions and the organic radical
ions), but mainly because the system is formed by two different
families of chains, with two almost orthogonal projections
of the easy axes in the ac plane, perpendicular to the chain
axis: this ‘accidental’ (in the sense that it is not imposed by
symmetry) orthogonality is the reason for the nearly isotropic
magnetic behaviour displayed by the system within such a
plane [36, 37].
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We adopt a simplified model formally equivalent to (4.1).
Taking into account only the dominant antiferromagnetic
exchange interaction (J < 0) between neighbouring DyIII

ions (which indeed are next-nearest neighbours in the real
system) and their uniaxial anisotropy (D > 0), the
system can approximately be described by the classical spin
Hamiltonian (4.1), where now |Sk | = 1. By means of a
classical transfer matrix calculation [41], the static properties
of the DyIII-based SCM turn out to be satisfactorily fitted [36]
by J = −6 K, D = 40 K, g‖ = 10.5, with the two easy
anisotropy axes ẑ2r−1, ẑ2r forming equal angles θ ≈ 75◦ with
the chain axis z. (Notice that the latter property holds true for
both families of chains.) Also in the case of the DyIII-based
SCM, the uniaxial anisotropy D turns out to be sufficiently
strong with respect to the exchange coupling |J | in order to
assume, as a first approximation (see footnote 3), the two
sublattice magnetizations of DyIII to be directed just along the
two easy axes. Thus one can define an equivalent non-collinear
Ising model (2.2), where the effective Ising exchange coupling
JI and the generalized Landé factor Gr are now defined as

JI = J cos(ẑ2r−1 · ẑ2r ), Gr = g‖
r (ẑr · êH ). (4.5)

Depending on the orientation of the oscillating magnetic
field with respect to the crystallographic axes, the FT of the
generalized Landé factor takes the form

G̃q = g‖ 1

N

N/2∑

r=1

e−iq2r [eiq(ẑ2r−1 · êH ) + (ẑ2r · êH )]

∝ g‖
{

cos θ δq,0 for H ‖ z (chain axis)

sin θ δq,π for H ⊥ z.
(4.6)

It is important to notice that this result holds true for both
families (A, B) of chains. Next, we observe that, since in the
DyIII-based SCM the spins on opposite sublattices are coplanar
with the chain axis, the angle between ẑ2r−1 and ẑ2r is just
2θ ≈ 150◦ > 90◦. Taking into account that the ‘true’ exchange
constant in (4.1) is antiferromagnetic, J < 0, from (4.5)
it follows that the effective Ising exchange coupling is now
ferromagnetic, JI > 0 (see figure 4, top). As a consequence, in
the low temperature limit β JI → ∞, the relaxation time τq=0

diverges, while τq=π does not. Thus, the a.c. susceptibility

χ(ω, T ) ∝ Nμ2
Bβ f (β JI)(g‖)2

×

⎧
⎪⎪⎨

⎪⎪⎩

cos2 θ
1

(1 − γI) − i(ω
α
)

for H ‖ z (chain axis)

sin2 θ
1

(1 + γI) − i(ω
α
)

for H ⊥ z
(4.7)

is expected to have a resonant behaviour, for low frequencies
ω/α 
 1, only when the oscillating magnetic field is applied
parallel to the chain axis, z, along which the magnetizations of
the two sublattices are uncompensated (see figure 4, top). Such
a theoretical prediction is again in excellent agreement with the
experimental a.c. susceptibility data [36] obtained in a single-
crystal sample of [Dy(hfac)3(NITPhOPh)]∞, thus confirming
that the DyIII-based canted antiferromagnet is also a bona fide
SCM. The only qualitative difference, with respect to the MnIII-
based chain, is that, due to the different geometry of the spin

Figure 4. (Colour online) Disposition of odd and even local axes
(ẑ2r−1 and ẑ2r ) and magnetic moments (thick arrows) in the
DyIII-based real SCM, discussed in section 4.2, with ferromagnetic
effective Ising exchange coupling JI > 0. Top: schematic view of the
chain structure (z is the chain axis), displaying the two families of
chains (A, with red magnetic moments, and B, with green magnetic
moments). Bottom: projections of magnetic moments in the xy
plane, perpendicular to the chain axis.

arrangement and of the local anisotropy axes with respect to the
chain axis, the resonant behaviour of the a.c. susceptibility is
now observed for applied field parallel to the chain axis, rather
than perpendicular to it.

4.3. The CoPhOMe (CoII-based) single-chain magnet

In the molecular magnetic compound of formula [Co(hfac)2

NITPhOMe], hereafter denoted by CoPhOMe [33, 34], the
magnetic contribution is given by cobalt ions, with an Ising
character and effective S = 1/2, and by NITPhOMe organic
radical ions, magnetically isotropic and with s = 1/2.
The spins are arranged on a helical structure, schematically
depicted in figure 5, right, whose projections in a plane
perpendicular to the helix axis z (coincident with the
crystallographic c axis), are represented in figure 5, left. The
primitive magnetic cell is made up of three cobalts (black
arrows) and three organic radicals (red arrows). Although
the effective spins of the two types of magnetic centres
have the same value, the gyromagnetic factors are different:
gCo �= gR; thus, since the nearest-neighbour (cobalt–
radical) exchange interaction is negative (and strong, |J | ≈
100 K) [34], the sublattice magnetizations are not compensated
along z, whereas they are compensated within the xy plane
perpendicular to the chain axis z. For this compound,
which was the first to display SCM behaviour [33, 34],
static measurements on single-crystal samples have not been
interpreted in terms of a simple model yet, due to the
complexity of the system itself. Thus, a relationship similar
to (4.2) and (4.5), which associates the parameters JI and Gk
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Figure 5. (Colour online) Disposition of even and odd local axes
(dashed lines) and magnetic moments (thick arrows) in the
CoPhOMe real SCM, discussed in section 4.3, with
antiferromagnetic effective Ising exchange coupling JI < 0. Right:
schematic view of the chain structure (z is the chain axis) along the
crystallographic y axis. Left: projections of local axes (dashed lines)
and of magnetic moments (thick arrows) in the xy plane,
perpendicular to the chain axis.

of the Ising Hamiltonian (2.2) with those of a more realistic
Hamiltonian, is still missing. However, the dynamic behaviour
has been thoroughly investigated treating—for the sake of
simplicity—both the CoII and the organic radical spins as Ising
variables, with σ = ±1. The effective Ising Hamiltonian is

H = −
N/6∑

l=1

3∑

m=1

{JIσl,2m [σl,2m−1 + σl,2m+1] + e−iωtμB H

× [gRσl,2m−1(ẑ2m−1 · êH ) + gCoσl,2m(ẑ2m · êH )]} (4.8)

where l is the magnetic cell index while m labels odd and even
sites, and boundary conditions σl,7 = σl+1,1 are assumed.

Since all the local axes ẑk (k = 1, . . . , 6) form the same
angle θ ≈ 55◦ with the z axis, when a magnetic field is applied
along z, the FT of the generalized Landé factor is simply given
by

G̃‖
q = cos θ

1

N

N/2∑

r=1

(gCoe−iq(2r−1) + gRe−iq2r )

= cos θ

2
[(gCo + gR)δq,0 + (gCo − gR)δq,π ] (4.9)

which, except for the prefactor cos θ , is quite similar to (3.6)
for the collinear Ising chain with alternating spins. Thus, the
parallel a.c. susceptibility is

χ‖(ω, T ) = Nμ2
Bβ f (β JI)

cos2 θ

4

[
(gCo + gR)2

(1 − γI) − i(ω
α
)

+ (gCo − gR)2

(1 + γI) − i(ω
α
)

]
. (4.10)

Taking into account that the effective exchange coupling of
CoPhOMe is negative (JI < 0), the antiferromagnetic branch
of the parallel susceptibility is characterized by a diverging
timescale τq=π = [α(1 + γI)]−1 at low temperature so that,
for low frequencies ω/α 
 1, χ‖(ω, T ) displays a resonant
behaviour.

Let us now consider the case of a field applied in the plane
perpendicular to the chain axis. For H ‖ x (see figure 5, left)
one has, letting k0 = π

3 ,

Gx
2r−1 = gR sin θ cos[k0(2r − 1)],

Gx
2r = gCo sin θ cos[k02r ] (4.11)

so that the FT takes the form

G̃x
q = sin θ

1

N

N/2∑

r=1

e−iq2r {gCo cos(k02r)

+ gReiq[cos(k0) cos(k02r) + sin(k0) sin(k02r)]}
= 1

4 sin θ [(gCo + gRei(q−k0))(δq,k0 + δq,π+k0)

+ (gCo + gRei(q+k0))(δq,−k0 + δq,π−k0 )] (4.12)

where, as usual, we have exploited (3.5). Thus it follows that
G̃q=± π

3
= sin θ

4 (gCo + gR) G̃q=π± π
3

= sin θ
4 (gCo − gR).

The corresponding relaxation times are τq=± π
3

= α

1− 1
2 γ

and τq=± 2π
3

= α

1+ 1
2 γ

so that, summing the four contributions

we obtain the perpendicular a.c. susceptibility:

χ⊥(ω, T ) = Nμ2
Bβ f (β JI)

sin2 θ

8

×
[

(gCo + gR)2

(1 − 1
2γ ) − i(ω

α
)

+ (gCo − gR)2

(1 + 1
2γ ) − i(ω

α
)

]
. (4.13)

In conclusion, for the sixfold helix model with alternating
spins and Ising exchange coupling in (4.8), the parallel
and perpendicular components of the a.c. susceptibility,
χ‖(ω, T ) and χ⊥(ω, T ), display a behaviour similar
to that of a ferrimagnetic chain with alternating spins
(see (3.7)) and of an n-fold helical spin arrangement with
equivalent spins (see (B.4)), respectively. In spite of the
approximations involved in model (4.8) to describe the real
CoPhOMe molecular magnetic chain, the two calculated
susceptibilities (4.10) and (4.13) qualitatively reproduce the
dynamic behaviour of this compound [33, 34]. In fact, no
out-of-phase a.c. susceptibility (imaginary part) is observed
when the field is applied in the plane perpendicular to the chain
axis, z, for the experimental frequencies (1–105 Hz) [34]. This
confirms the general result derived in appendix B that forbids
the observation of a resonant behaviour in χ⊥ for an Ising spin
chain arranged as an n-fold helix with n > 2. In contrast,
when the oscillating field is parallel to z, a resonant behaviour
is observed as a function of temperature. Even though our
theoretical treatment holds only for small deviations from
equilibrium, it is worth mentioning that the absence of slow
relaxation for fields applied in the perpendicular plane is shown
in the low temperature magnetization curve as well: at low
enough temperatures, a finite-area hysteresis loop (of dynamic
origin) is present only when a static field is applied parallel to
the chain axis, while no hysteresis is observed in the in-plane
magnetization curve [33, 34].

4.4. Slow versus fast relaxation of the spontaneous
magnetization

We conclude this section, devoted to comparison with
experimental systems, mentioning what our simple model
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would predict for the relaxation, after field removal, in
collinear ferro- and ferrimagnetic chains. The following
considerations are based on realistic values for the exchange
coupling in real SCMs and accessible magnetic fields.
However, since relaxation is a strongly out-of-equilibrium
process, predictions in this context are not expected to be as
reliable as the selection rules derived for a.c. susceptibility; in
fact, only small departures from equilibrium are assumed in the
present theory.

In appendix C, the time evolution of sk(t) starting
from two physically meaningful initial conditions is derived,
showing that spins located on the even and odd sites of a linear
lattice relax from saturation following a mono-exponential law
(see (C.11) and (C.12)). Different characteristic timescales,
τq=0 and τq=π , are found depending on whether an initial
condition of full or partial saturation is assumed ((C.1)
and (C.2), respectively). As a consequence, the macroscopic
magnetization, expressed by (2.4), also displays the same
mono-exponential relaxation as the single-site quantities sk(t).
Limiting our analysis to collinear spin chains, the case in which
all the magnetic moments are equal (ge = go) and the case in
which two sublattices are present (ge �= go) display a different
physical scenario and need to be discussed separately.

• For ge = go, a spin chain can only be prepared in the
saturated initial configuration (C.1), with all the spins
aligned in the same direction, through the application
of an external field so that the corresponding relaxation
time is τq=0 (see (C.11)). Thus, when the field is
abruptly removed, such a system is expected to relax
slowly at low temperature only if the exchange coupling
is ferromagnetic (JI > 0). In contrast, if the exchange
coupling is antiferromagnetic (JI < 0) and the chain is
‘forced’ in the saturated state by a strong applied magnetic
field, the system is expected to relax very fast (in a typical
time of the order of α−1) when the field is removed.

• As pointed out in section 1, a model with antiferromag-
netic coupling (JI < 0) but non-compensated magnetic
moments on the two sublattices (ge �= go) is more akin to
real SCMs [1, 3, 33]. Yet it is very interesting since, de-
pending on the intensity of the applied magnetic field, the
system can be prepared either in the saturated initial con-
figuration (C.1), where all spins are parallel to each other,
or in the partially saturated one (C.2), where nearest neigh-
bours are antiparallel. In the former case, a very strong
field is required in order to overcome the antiferromag-
netic coupling between nearest neighbours; once the field
is removed, the relaxation of the magnetization is expected
to be fast at low temperatures, on the basis of the solu-
tion (C.11). In the latter case, the partially saturated initial
configuration (C.2) can easily be obtained through the ap-
plication of a smaller, experimentally accessible magnetic
field; when the field is abruptly removed, the relaxation
is expected to be slow according to the solution (C.12).
The solution (C.12) justifies the observation of hystereti-
cal behaviour of dynamic origin in ferrimagnetic quasi-1D
compounds like CoPhOMe [33].

Summarizing, according to Glauber dynamics, when
a collinear ferrimagnetic chain is prepared in an initial

state—fully or partially saturated depending on the intensity
of the applied magnetic field—once the field is removed
abruptly, the spin system can show fast or slow relaxation,
respectively. Fast relaxation corresponds to stronger fields.
Due to its large antiferromagnetic exchange constant (|JI| ∼
100 K) [33, 34], preparing the CoPhOMe molecular chain
in the fully saturated initial configuration would require
very high, almost inaccessible, fields (∼1000 kOe). Thus
this compound is not a good candidate for such kinds of
experiments.

5. Conclusions

In conclusion, in the framework of a one-dimensional
Ising model with single spin-flip Glauber dynamics, taking
into account non-collinearity of local anisotropy axes
between themselves and with respect to the crystallographic
(laboratory) frame, we have investigated: (i) the dynamics of
magnetization reversal in zero field and (ii) the response of the
system to a weak magnetic field, oscillating in time. We have
shown that SCM behaviour is not only a feature of collinear
ferro- and ferrimagnetic, but also of canted antiferromagnetic,
chains. In particular, we have found that resonant behaviour
of the a.c. susceptibility versus temperature in response to an
oscillating magnetic field is possible, at low frequency, only
for fields applied in a direction where magnetic moments are
uncompensated. In contrast, a broad peak is expected when
there is no net magnetization along the field direction.

The role played by geometry in selecting the timescales
involved in a process is an important and peculiar result,
typical of a magneto-molecular approach to low-dimensional
magnetism. In fact, magnetic centres with uniaxial
anisotropy usually correspond to building blocks with low
symmetry [42, 43], which—in turn—often crystallize in more
symmetric space groups, realizing a reciprocal non-collinearity
between local anisotropy axes as a natural consequence [1, 2].
Thus the family of real SCMs, to which our model applies,
does not restrict to ad hoc synthesized compounds but, instead,
is expected to grow larger in the future [3]. As a validity check
of our selection rules (as well as a tutorial exemplification),
we have shown how our theory applies successfully to three
different molecular-based spin chains; when possible, we
have put the parameters of our model Hamiltonian (2.2) in
relationship with those of more general models, typically used
to fit the static properties of the corresponding compounds.
Needless to say, the possibility of schematizing the chosen
three compounds with Hamiltonian (2.2) relies on the fact that
at low enough temperatures they behave as chains consisting
of two-level units coupled by a fully anisotropic exchange
interaction. The latter assumption is expected to hold also for
spin larger than one-half in the presence of strong single-ion
anisotropy, provided that domain walls still remain sharp [28]
(see footnote 3). In this case each single magnetic centre
follows a thermally activated dynamics, with an energy barrier
�0, and well-established heuristic arguments [44] suggested to
replace the attempt frequency by α = α0e−β�0 .

A naive application of our threefold-helix results (B.3)
and (B.4) to the recently synthesized non-collinear Dy3 cluster
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would prevent the observation of slow relaxation, while single-
molecule-magnet dynamics is indeed observed there even
in the presence of compensated magnetic moments [45].
However, such a behaviour in the classical regime, i.e. far from
level crossings where underbarrier processes of quantum origin
are important, is observed for Dy3 in non-zero field and the
resonant behaviour is due to a change of the relative population
between the lowest and the first excited Kramers doublets of
each Dy ion: for sure, this mechanism cannot be accounted for
when dealing with two-level elementary variables, like σk in
Hamiltonian (2.2). An extension of our model to multivalued
σks definitely deserves to be considered in the future.

Beyond molecular spin chains, our approach might
also be used to model monatomic nanowires showing slow
relaxation of the magnetization at low temperatures [46] and,
possibly, one-dimensional spin glasses [47] (provided that
quenched disorder is somehow taken into account). In this
regard, the question of distinguishing between SCM and spin-
glass behaviour in quasi-1D systems is still a hot topic of
discussion [48–51].

After the successful organization of single-molecule
magnets onto surfaces [52–54], the grafting of properly
functionalized SCMs on substrates represents a foreseeable
goal as well as a fundamental step for their possible use as
magnetic-memory units [3]. Technologies employing more
traditional materials, but based on alternative geometrical
arrangements of magnetic anisotropy axes with respect to
the switching field, such as in perpendicular recording [55]
or processional switching [56], are already at the stage of
forthcoming implementation in devices. Were SCMs to be
considered as a possible route to tackle the main issues of high-
density magnetic storage—i.e. optimization of the signal–noise
ratio, thermal stability and writeability [55]—the proposed
selection rules for slow relaxation, and related bistability,
might find an application in magnetic-memory manufacture as
well.
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Appendix A. The a.c. susceptibility of a non-collinear
Ising chain

For weak applied a.c. fields, δk can be linearized:

δk = tanh(βμBGk H (t)) ≈ βμBGk H (t) (A.1)

so that the system of equations of motion (3.1) takes the form

dsk(t)

d(αt)
= −sk(t) + γ

2
[sk+1(t) + sk−1(t)] (A.2)

where

f (β JI) = 1 − γ η = 1 − η2

1 + η2
(A.3)

is a function of the reduced coupling constant β JI and we have
taken into account that γ = 2η/(1+η2). After a brief transient
period, the system will reach the stationary condition in which
the magnetic moment of each spin oscillates coherently with
the forcing term at the frequency ω. The expectation value of a
spin on the kth lattice site, sk(t), can be expressed through its
spatial FT, s̃q , which leads to the trial solution

sk(t) =
∑

q

s̃q eiqk e−iωt . (A.4)

By substituting the latter in the system (A.2) we get

s̃q = β f (β JI)μB H
αG̃q

α(1 − γ cos q) − iω
, (A.5)

where G̃q is the FT of Gk :

G̃q = 1

N

N∑

k=1

e−iqk Gk . (A.6)

The average of stochastic magnetization can readily be
obtained from (2.4) as

〈M〉t = μBe−iωt
N∑

k=1

∑

qq ′
G̃q s̃q ′ eiqk eiq ′k, (A.7)

which accounts for non-collinearity of local anisotropy axes
with respect to the field direction. The summation over all
the lattice sites (k indices) yields a factor Nδq,−q ′ in (A.7);
substituting the expression (A.5) for s̃q , one obtains

〈M〉t = Nμ2
Bβ f (β JI)H e−iωt

∑

qq ′

αG̃q G̃q ′δq,−q ′

α(1 − γ cos q) − iω
.

(A.8)
The a.c. susceptibility is finally obtained by dividing (A.8) by
H e−iωt :

χ(ω, T ) = Nμ2
Bβ f (β JI)

∑

q

α|G̃q |2
α(1 − γ cos q) − iω

(A.9)

(where G̃q G̃−q = |G̃q |2).

Appendix B. The a.c. susceptibility of an n-fold helix

As an example of a non-collinear spin arrangement, we
consider a system of spins with the local axes of anisotropy
arranged on an n-fold helix (see figure B.1); θ is the angle that
the local axes form with z, the unique axis of the helix (i.e.
the chain axis). In this case the Landé factors are equal on
all lattice sites, but different spins experience different fields
because of the geometrical arrangement of magnetic moments.
In the following we will make the approximation that the Landé
tensor of a spin on the kth lattice site has just a non-zero
component g along the easy anisotropy direction ẑk , so that
Gk = gẑk · êH (see (2.3)). In the crystallographic frame
(x, y, z), the directors ẑk are (integer k)

ẑk = sin θ

[
cos

(
2πk

n

)
êx + sin

(
2πk

n

)
êy

]
+ cos θ êz . (B.1)
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Figure B.1. Thick arrows denote the projections on the xy plane,
perpendicular to the chain (helix) axis z, of magnetic moments in a
one-dimensional Ising helimagnet, for different fold symmetries
(n = 2, 3, 4, 6). Dashed lines are the projections of the local axes of
anisotropy, ẑk .

Let us first consider the case of an oscillating magnetic
field H applied parallel to z, the helix axis. All the spins
actually undergo the same field, and since Gk = g cos θ

independently of the lattice site k, the only peak in the FT G̃q

occurs at q = 0:

G̃z
q = g cos θ δq,0 (∀ n). (B.2)

Following the same procedure as in section 3.1, the parallel
a.c. susceptibility (‖= zz) takes the form

χ‖(ω, T ) = Nμ2
Bβ f (β JI)

g2 cos2 θ

(1 − γ ) − i(ω
α
)

(∀ n) (B.3)

which is valid for any value of the helix fold index n. A
resonant behaviour is expected in this case for JI > 0.

Now we consider the case of an oscillating field H applied
perpendicularly to the chain axis with n > 2.

• n > 2. In this case, denoting by êx · êH and êy · êH the
directors of the in-plane field, the FTs of Gk are given by

G̃x
q = 1

N
(êx · êH )g sin θ

N∑

k=1

cos
(2πk

n

)
e−iqk

= (êx · êH )g sin θ 1
2 (δq, 2π

n
+ δq,− 2π

n
)

G̃ y
q = 1

N
(êy · êH )g sin θ

N∑

k=1

sin
(2πk

n

)
e−iqk

= (êy · êH )g sin θ
1

2i
(δq, 2π

n
− δq,− 2π

n
).

Remarkably, just as |G̃q |2 appears in (3.3), the general
result for the in-plane susceptibility turns out to be
independent of the field direction. Thus, for n > 2, the
perpendicular (⊥) a.c. susceptibility of the n-fold helix is
given by

χ⊥(ω, T ) = Nμ2
Bβ f (β JI)

1
2 sin2 θ

× g2

[1 − γ cos( 2π
n )] − i(ω

α
)
, (B.4)

where we have exploited the fact that cos(− 2π
n ) =

cos( 2π
n ) for the term appearing at the denominator of (3.3).

Note that a resonant behaviour is never expected—neither
for JI > 0 nor for JI < 0—when the a.c. field is applied
perpendicularly to an n-fold helix with n > 2.

Appendix C. Relaxation of the magnetization in zero
field

The original Glauber model was formulated for a chain of
collinear spins with the same Landé factors [6]: i.e. in (2.2)
one has Gk = g, ∀ k = 1, . . . , N . Assuming that the system
has been fully magnetized by means of a strong external field,
one can study how the system evolves if the field is removed
abruptly. This corresponds to taking a fully saturated initial
condition

sk(0) = 1, ∀ k. (C.1)

The configuration with all the spins aligned in the same
direction (C.1) reflects an experimental situation that can be
easily obtained for ferromagnetic coupling (JI > 0) but
may require very strong fields (possibly inaccessible) for
antiferromagnetic couplings (JI < 0).

In ferrimagnetic chains, on the other hand, a ‘partial’
saturation can be reached, provided the antiferromagnetic
coupling (JI < 0) between nearest neighbours is ‘strong
enough’, meaning that the antiferromagnetic coupling must
be much larger (JI ≈ 100–1000 K) than the Zeeman energy
associated with accessible magnetic fields (as often happens
in experiments [1, 3]). In fact, if the Landé factors for odd and
even sites are not equal (go �= ge), through the application of an
opportune field the sample can be prepared in a configuration
with

sk(0) =
{

+1 for k = 2r + 1 (k odd)

−1 for k = 2r (k even).
(C.2)

With respect to the case considered by Glauber, it is convenient
to separate explicitly the expectation values of the odd sites,
s2r+1(t), from those of the even sites, s2r (t). Thus, for H = 0,
the set of N equations of motion (2.9) can be rewritten as

d

dt
s2r = −α

[
s2r + 1

2γ (s2r+1 + s2r−1)
]

d

dt
s2r+1 = −α

[
s2r+1 + 1

2γ (s2r + s2r−2)
]
.

(C.3)

In the following, the solutions of (C.3) will be found using two
different approaches that yield identical results.

C.1. The generating function approach

First, we expose in detail the generating function approach that
closely follows Glauber’s original paper. By assuming periodic
boundary conditions and defining the two generating functions:

L(y, t) =
+∞∑

r=−∞
y2r+1 s2r+1(t),

G(y, t) =
+∞∑

r=−∞
y2r s2r (t),

(C.4)
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(C.3) can be expressed as two differential equations:

L̇(y, t) = −L(y, t) + 1
2γ (y + y−1)G(y, t)

Ġ(y, t) = −G(y, t) + 1
2γ (y + y−1)L(y, t)

(C.5)

(with the dot indicating the first derivative with respect to the
adimensional variable αt). The system (C.5) can be decoupled
through the substitution

U(y, t) = L(y, t) + G(y, t),

W(y, t) = L(y, t) − G(y, t),
(C.6)

from which it follows

U̇(y, t) = −(1 − ν)U(y, t)

Ẇ(y, t) = −(1 + ν)W(y, t),

with ν = 1
2γ (y + y−1). The solutions of these two

equations are U(y, t) = U(y, 0)e−(1−ν)αt and W(y, t) =
W(y, 0)e−(1+ν)αt and, exploiting the property

exp
[

1
2 (y + y−1)x

] =
+∞∑

k=−∞
yk Ik(x) (C.7)

of the Bessel functions of imaginary argument Ik(x), can be
rewritten as

U(y, t) = U(y, 0)e−αt
+∞∑

k=−∞
ykIk(γ αt)

W(y, t) = W(y, 0)e−αt
+∞∑

k=−∞
(−1)k ykIk(γ αt).

The solutions to the system (C.5) can be obtained from the
inverse transformation of (C.6):

L(y, t) = 1
2 e−αt

+∞∑

k=−∞
yk [U(y, 0)Ik(γ αt)

+ (−1)kW(y, 0)Ik(γ αt)]
G(y, t) = 1

2 e−αt
+∞∑

k=−∞
yk [U(y, 0)Ik(γ αt)

− (−1)kW(y, 0)Ik(γ αt)].
Then, separating the k-odd from the k-even terms in both sums,
one gets

L(y, t) = e−αt
+∞∑

r=−∞
[y2rL(y, 0)I2r (γ αt)

+ y2r+1G(y, 0)I2r+1(γ αt)]
G(y, t) = e−αt

+∞∑

r=−∞
[y2rG(y, 0)I2r (γ αt)

+ y2r−1L(y, 0)I2r−1(γ αt)].
By means of (C.4), the functions L(y, 0) and G(y, 0) can

be expressed in terms of the initial single-spin expectation
values, s2r (0) and s2r+1(0) respectively, so that

L(y, t) = e−αt
+∞∑

r=−∞

[
y2r

+∞∑

m=−∞
y2m+1s2m+1(0)I2r (γ αt)

+ y2r+1
+∞∑

m=−∞
y2ms2m(0)I2r+1(γ αt)

]
.

Putting k ′ = k + m we have

L(y, t) = e−αt
+∞∑

k′=−∞
y2k′+1

+∞∑

m=−∞
[s2m+1(0)I2(k′−m)(γ αt)

+ s2m(0)I2(k′−m)+1(γ αt)]. (C.8)

By comparing this latter result with the definition of
L(y, t) (C.4) and requiring that the terms corresponding to the
same power of y be equal, an explicit function for the odd-spin
expectation values is readily obtained:

s2r+1(t) = e−αt
+∞∑

m=−∞
[s2m+1(0)I2(r−m)(γ αt)

+ s2m(0)I2(r−m)+1(γ αt)]. (C.9)

The substitution of L(y, 0) and G(y, 0) in the solution found
for G(y, t) yields, after analogous passages, the expectation
value for even sites:

s2r (t) = e−αt
+∞∑

m=−∞
[s2m(0)I2(r−m)(γ αt)

+ s2m+1(0)I2(r−m)−1(γ αt)]. (C.10)

In order to distinguish between the ferromagnetic
and ferrimagnetic relaxations, we specialize the general
solutions, (C.9) and (C.10) to the two different kinds of initial
conditions (C.1) and (C.2). In both cases, we will assume that
the exchange coupling JI is negative.

Let us start from the saturated configuration (C.1), and
substitute the initial condition sk(0) = 1 for all k in both (C.9)
and (C.10):

s2r (t) = e−αt
+∞∑

m=−∞
[I2(r−m)(γ αt) + I2(r−m)−1(γ αt)]

s2r+1(t) = e−αt
+∞∑

m=−∞
[I2(r−m)(γ αt) + I2(r−m)+1(γ αt)].

Hence, by exploiting the property (C.7) of the Bessel functions
(taking y = 1), and redefining the sums by a unique index j ,
we get

s2r (t) = e−αt
+∞∑

j=−∞
I j (γ αt) = e−α(1−γ )t

s2r+1(t) = e−αt
+∞∑

j=−∞
I j (γ αt) = e−α(1−γ )t .

(C.11)

This result tells that, starting with all the spins aligned
in the same direction, the expectation value of each spin
(both on even and odd sites) decays as a mono-exponential
law with relaxation time τq=0 = [α(1 − γ )]−1, which is
just the characteristic timescale obtained as the inverse of
the dispersion relation λq with zero wavenumber q = 0
(see (2.11)). Notice that τq=0 can diverge for T → 0 only
in the case of ferromagnetic coupling, JI > 0 (γ > 0).

Let us now consider the partially saturated configura-
tion (C.2), in which sk(0) = 1 for k odd and sk(0) = −1 for
k even. (C.9) and (C.10) specialized to those initial conditions
are

s2r (t) = −e−αt
+∞∑

m=−∞
[I2(r−m)(γ αt) − I2(r−m)−1(γ αt)]

13
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s2r+1(t) = e−αt
+∞∑

m=−∞
[I2(r−m)(γ αt) − I2(r−m)+1(γ αt)] ;

again from the property (C.7) (but now for y = −1), it follows

s2r (t) = −e−αt
+∞∑

j=−∞
(−1) jI j(γ αt) = −e−α(1+γ )t

s2r+1(t) = e−αt
+∞∑

j=−∞
(−1) jI j (γ αt) = e−α(1+γ )t .

(C.12)

Also in this case all the spins of the system relax with a mono-
exponential law, but now the relaxation time is τq=π = [α(1 +
γ )]−1, which corresponds to the inverse of the eigenvalue λq

with wavenumber q = π , see (2.11). Notice that τq=π can
diverge for T → 0 only in the case of antiferromagnetic
coupling, JI < 0 (γ < 0).

Summarizing, according to the sign of the exchange
constant, both timescales τq=0 (for JI > 0) and τq=π (for
JI < 0) diverge in the low temperature limit T → 0, following
an Arrhenius law:

τ = 1

2α
e4β|JI | (C.13)

with energy barrier 4|JI| (slow relaxing mode). It is worth
noting that the remaining relaxation times, given by the inverse
of the eigenvalues in (2.11) with q �= 0 and π , always remain
of the same order of magnitude as α−1 (fast relaxing modes).
This timescale is typically very small (∼ps) in real systems,
and negligible with respect to the characteristic times involved
in any experimental measurement we refer to.

C.2. The Fourier transform approach

The solutions, (C.11) and (C.12), to the set of equations (C.3)
can alternatively be deduced within the Fourier transform (FT)
formalism, which has already been exploited to obtain the
dispersion relation (2.11). Recalling the definition (2.10) of
sk(t) and its spatial FT:

s̃q = 1

N

∑

k

sk(t)e
−iqk eλq t , (C.14)

we evaluate s̃q at time t = 0, s̃q = 1
N

∑
k sk(0)e−iqk , for the

two initial conditions of interest (C.1) and (C.2). Starting from
the all-spin-up configuration (C.1), we have

s̃q = 1

N

∑

k

e−iqk = δq,0. (C.15)

Hence, the solution for the expectation value of a spin localized
on the k lattice site at time t is

sk(t) =
∑

q

δq,0eiqke−λq t = e−λq=0 t , (C.16)

which is identical to (C.11) since λq=0 = α(1 − γ ).
Starting from the partially saturated configuration (C.2), it

is useful to rewrite it as sk(0) = −eiπk , so that the FT at t = 0
is

s̃q = − 1

N

∑

k

eiπk e−iqk = −δq,π . (C.17)

Hence, the solution is readily obtained:

sk(t) = −
∑

q

δq,π eiqk e−λq t = −eiπke−λq=π t , (C.18)

which is identical to (C.12) since λq=π = α(1 + γ ).
Finally, we observe that (C.16) and (C.18) hold even for a

ring with a finite number N of spins, while (C.11) and (C.12)
were obtained in the infinite-chain limit.
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